The Hot Lunch Box is a specially designed line of insulated, battery operated, heat capable food containers. Design intent is to provide consumers with an effective means of warming food on-the-go prior to eating, ensuring foods are safe to eat and deliciously hot when ready to enjoy.

Essentially rectangular in shape, the Hot Lunch Box would be a box-like unit featuring copious interior room for housing virtually any chosen food or drink items. Ideal for use by children or adults, this device would measure approximately 30 cm (about 12 inches) in length, 20 cm in width (about 8 inches), and 5 cm (about 2 inches) in depth. Featuring a convenient carrying handle on its exterior lid, this lunch box would also boast a small storage compartment in the inside lid area for storing utensils and napkins. The Hot Lunch Box lid would also offer three (3) closures, on the front and each side, to prevent accidental opening. Inside, 3 removable, dishwasher-safe containers would be provided; a large and small container situated over the Box's heating elements, and a third, small container accorded for cold foods or drinks only. Facilitating the warming for the food container, the elements would be powered by a rechargeable battery source such as nickel cadmium or nickel metal hydride that provide 20 to 30 minutes of heating time.

The Hot Lunch Box would be equipped with a digital clock/counter component, integrally connected to the heating elements. Positioned on the front exterior of the unit, this counter would feature operational buttons that allow a user to set the time he or she wishes to eat. Approximately 20 minutes prior to the set eating time, the heating elements would automatically engage and begin warming the food within. As such, the Hot Lunch Box would be opened at the designated time to reveal a hot, thoroughly heated meal; and at the same time, any foods placed in the non-heated container would remain cool. With controls to set the temperature from tepid to warm to hot, the Hot Lunch Box's heating elements would possess a core maximum temperature of 200 degrees Fahrenheit, and a radiant temperature of 150 to 170 degrees F.

The Hot Lunch Box would provide consumers with a portable container that ensures food is perfectly warmed when ready to eat. Smartly configured with insulated, heat-conducting compartments controlled by a digital timer, these units would offer an expedient means for users to enjoy a tasty, hot lunch and fresh, cool salads and drinks during hectic and busy days. Additionally, those without access to microwave ovens while at work or school would not have to worry about enduring an unpleasantly cold meal, or worse, resort to eating bland cafeteria food. The Hot Lunch Box would also render food safer to eat, as the short period of time needed for heating and storing eliminates the risk of bacteria forming in the closed, warm confines of the box. Thoughtfully designed, the Hot Lunch Box would prove particularly ideal for school children who take their lunches with them. Kids who are able to enjoy a hot, hearty midday meal are better able to concentrate on their lessons, and are sufficiently fortified with the vitamins and nutrients needed for their active, growing bodies. Affordably priced, the Hot Lunch Box should be well received by the general consumer populace, a very sizable market potential.